
Chapter 12 Depth profiling 
 

12.1. Introduction to nanoscale depth profiling 
 
Microwave tomography is an active, developing research area. The objective is to visualize hidden, 
subsurface features through application of microwave radiation. Applications include ground penetrating 
radars (GPR) [1], defect spectroscopy in materials, fault detection in construction and manufacturing, and 
the detection of hidden objects at secure access points. Recently, significant effort has been devoted to 
microwave tomography for medical applications [2]-[4] and frequency-dependent, mechanical metrology 
of defects.[5] In spite of this broad effort, microwave tomography at the nanoscale is in its infancy. One 
significant challenge is that measurements at the nanoscale are done mostly in the near-field, as is also 
the case in GPR and some biological applications, but with the additional requirement that the nanoscale, 
electromagnetic interaction of microwave radiation with materials must be understood. These unique 
interactions with nanoscale systems usually differ significantly from corresponding interactions with 
macroscopic objects. In this chapter, we will discuss basic principles of nanoscale microwave tomography 
and some initial tomographic measurements with near-field scanning probe microscopes. 
 
Note that we use “three-dimensional” to describe measurements of a physical variable such as 
permittivity or permeability as a function of three spatial coordinates. The resulting dataset is often 
referred to as a “tomograph.” Similarly, we use “two-dimensional” to describe measurements of a 
physical variable as a function of two spatial coordinates. Here, we will refer to the resulting dataset as an 
“image.” 
 
In order for progress to continue in this area, existing macroscopic methods for tomography of buried 
materials and interfaces have to be modified. Specifically, the material-dependent, effective penetration 
depth of the near-field signal must be understood and controlled. Furthermore, both reflection and 
transmission measurements have to be considered. In principle, the combination of reflection mode and 
transmission mode measurements will enable detection of embedded objects and lead to quantitative 
measurement of their position, geometry, and electromagnetic material properties. We will begin with a 
detailed introduction of basic theoretical approaches to three-dimensional tomography before reviewing 
experimental demonstrations of nanoscale depth profiling with scanning probe microscopy. To date, the 
development of the theoretical descriptions has outpaced experiment demonstrations. At the core of the 
theoretical treatment lies the task of solving a complicated inverse problem. As a result, some complex 
mathematical details will necessarily be introduced below. 
 
12.2 Theoretical foundation of depth profiling 
 
12.2.1 Near-fields and tomography  
 
One central, ongoing challenge for quantitative near-field imaging, as well as three-dimensional 
tomography, is the convolution of the topography with the material properties of the sample.  There are 
a few exceptions, such as two-dimensional imaging of truly flat surfaces for which observed contrast in 
images is entirely due to variations in the material properties of the system surface, but in most cases 
topographic contrast is difficult to distinguish from material contrast. This applies especially to near-field 
microwave scanning probe measurements as the measured reflection coefficient is determined largely by 
capacitive interactions. How does one de-embed the topographic contribution from the measured 
reflection coefficient image? Some practical, experimental approaches to this problem for the case of 



near-field microwave imaging will be discussed in Chapter 14. Here, we focus on the development of the 
theory of near-field scattering. The solution to the inverse scattering problem offers the enticing 
possibility to nondestructively retrieve the three-dimensional spatial distribution of charge, permittivity, 
permeability, and other physical parameters. Near-field, three-dimensional tomography as carried out by 
a near-field microscope is an electromagnetic problem with similar analytical approaches for both near-
field optical and microwave microscopes. From the experimental point of view, microwave microscopy 
has an advantage in that it is easier to simultaneously measure the amplitude and phase of microwave 
signals. The measured phase response is an important input for the solution of the inverse scattering 
problem.  
 
Analytically, three-dimensional tomography is a difficult inverse scattering problem, that is further 
complicated by the fact that electromagnetic fields are difficult to calculate in complex environments. 
Therefore, a general, electromagnetic, near-field theory of three-dimensional tomography is elusive. We 
will primarily address aspects of the problem that may prove to be important for the specific case of near-
field scanning microwave microscopy (NSMM) measurements. NSMM tomography measurements are 
done by planar scanning above the sample surface. Thus, to obtain three-dimensional tomographic data, 
spatially-resolved NSMM images must be complemented by changing at least one parameter in addition 
to the lateral probe position. From the outset, it is important to note that it is only possible to measure 
buried structures within sample volumes in which there is efficient formation of the near-field signals. As 
the depth of the buried feature increases, the resolution of a near-field microscope deteriorates rapidly. 
 
12.2.2 Near-field of an elementary dipole 
 
As a starting point to describe the electric field for subsurface NSMM measurement applications, consider 
the field from a unit point source. The complex potential from a unit point source in an infinite, uniform 
medium is  
 

  𝜙(𝑟) =
𝑒−𝑗𝑘𝑟

4𝜋𝑟
  ,       (12.1) 

 
where r is the distance from the source and k is the wave vector. Harmonic time dependence of the form 

𝑒𝑗𝜔𝑡 is assumed, where ω is the radial frequency. Assume that the point source is an elementary dipole 
current source of the form 𝒖𝒛𝐼0∆𝑙 , where 𝒖𝒛 is a unit vector in the z direction, ∆𝑙 is the length of the 
dipole, and 𝐼0 is the current amplitude. The field of an elementary electric dipole of the length ∆𝑙 at 
arbitrary distance 𝑟𝒖𝑟 = 𝑟(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝒖𝑥 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝒖𝑦 + 𝑐𝑜𝑠𝜃𝒖𝑧),  where angle 𝜃 is with the  respect 

to z axis, can be expressed as   
 

𝐻𝜙 ≈
𝐼0∆𝑙𝑒−𝑗𝑘𝑟

4𝜋𝑟2 𝑠𝑖𝑛𝜃 = 𝑗
𝑞𝜔∆𝑙𝑒−𝑗𝑘𝑟

4𝜋𝑟2 𝑠𝑖𝑛𝜃   ,    (12.2) 

 

𝐸𝑟 ≈ −𝑗𝑍0
𝐼0∆𝑙𝑒−𝑗𝑘𝑟

2𝜋𝑘𝑟3 𝑐𝑜𝑠𝜃 =
𝑞∆𝑙𝑒−𝑗𝑘𝑟

2𝜋𝜀𝑟3 𝑐𝑜𝑠𝜃   ,    (12.3) 

 

𝐸𝜃 ≈ −𝑗𝑍0
𝐼0∆𝑙𝑒−𝑗𝑘𝑟

4𝜋𝑘𝑟3 𝑠𝑖𝑛𝜃 =
𝑞∆𝑙𝑒−𝑗𝑘𝑟

4𝜋𝜀𝑟3 𝑠𝑖𝑛𝜃  .    (12.4) 

 
Here, 
 

𝑘 =
2𝜋

𝜆
= 𝜔√𝜇𝜀  ,       (12.5a)  



𝑍0 = √
𝜇

𝜀
 ,        (12.5b) 

and 
 

 𝐼0 =
𝜕𝑞

𝜕𝑡
= 𝑗𝜔𝑞  .       (12.5c) 

 
Hφ is the polar component of the magnetic field. Er and Eθ are the radial and azimuthal components of the 
electric field. The permittivity and permeability are represented by µ and ε, respectively. For near-field 

(𝑘𝑟 ≪ 1) the exponential term 𝑒−𝑗𝑘𝑟in the complex potential can be neglected. Note that we are taking 
advantage of the near-field nature of the problem, implementing a quasi-electrostatic solution. This 
quasistatic approximation is used for many near-field problems. 
 
In order to solve inverse problems, it is useful to introduce the spectral decomposition (or plane wave 
expansion) of these fields. One can express  
 

𝜙(𝑟) =
𝑒−𝑗𝑘𝑟

4𝜋𝑟
= −𝑗 ∫ 𝑑𝑘𝜌

∞

0

𝑘𝜌

𝑘𝑧
𝐽0(𝑘𝜌𝜌)𝑒−𝑗𝑘𝑧|𝑧| =

−𝑗

2
∫ 𝑑𝑘𝜌

∞

−∞

𝑘𝜌

𝑘𝑧
𝐻0

1(𝑘𝜌𝜌)𝑒−𝑗𝑘𝑧|𝑧|  (12.6) 

 

with 𝒌𝜌 ∙ 𝝆 = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 𝑎𝑛𝑑 𝑘𝑧 = (𝑘0
2 − 𝑘𝑥

2 − 𝑘𝑦
2)

1

2 = (𝑘0
2 − 𝑘𝜌

2)1/2. 𝐽0(. ) and  𝐻0
1(. ) are Bessel 

(zero order) a Hankel (zero order first kind) functions, respectively. Equation (12.6) represents the 
Sommerfeld identity for spherical waves [6]. The wave vectors can be considered to be complex and 
include some loss. The spectral decomposition of the electromagnetic field components then can be 
expressed using the Sommerfeld identity (12.6) and realizing the fact that these components can be 
obtained from differentiation of 𝜙(𝑟) with respect to 𝑟. 
 
12.2.3 Near-field scattering at a subwavelength aperture 
 
The initial experimental approaches to near-field microwave microscopy were based on making small 
holes (apertures) into microwave waveguides. The end of the tip in near-field microwave microscope can 
be considered, in first approximation, from the theoretical point of view as a small aperture. Therefore, it 
is important to start with the work related to diffraction of electromagnetic waves on small aperture as 
the initial approach to solution of near-field microwave microscopy problem. Since the original solution 
of the problem by Bethe, [7] the near-field physics of an electromagnetic wave scattered from an aperture 
has been intensively investigated by Levine and Schwinger [8], Bouwkamp [9] and many others.  The total 
electromagnetic field components close to a small aperture are expressed as a superposition of the fields 
that would be present without the aperture and the scattered fields: 𝑬 =  𝑬𝑜 + 𝑬𝑠, 𝑯 = 𝑯0 + 𝑯𝑠 . 
𝑬𝑜 𝑎𝑛𝑑 𝑯𝑜 are the electric and magnetic fields, respectively that would be present without the aperture. 
𝑬𝑠 𝑎𝑛𝑑 𝑯𝑠are the scattered fields [6]. 
 
From here, we follow the approach of Reference [9]. The boundary value problem at the aperture is solved 
in terms magnetic currents and charge densities in the aperture by use of a Green’s function. We assume 
that the aperture is small with respect to incident wavelength. If we consider the case of normal incidence 
of a plane, monochromatic wave on a round aperture of diameter D, then the magnetic charge density 
can be expressed as [10] 
 



𝜎𝑚(𝒓) = −
𝑯0∙𝒓

𝜋2((
𝐷

2
)

2
−𝑟2)

1/2       (12.7) 

 
and the magnetic current density is 
 

𝑱𝑚(𝒓) =
−𝑗𝑘0

3𝜋2 [2𝑯0 ((
𝐷

2
)

2

− 𝑟2)
1/2

+
𝑯0(𝒓∙𝒓)−𝒓(𝑯0∙𝒓)

((
𝐷

2
)

2
−𝑟2)

1/2 ]  .  (12.8) 

 
The magnetic charge and current densities lead to expressions for the scattered field outside the aperture  
[9] in the form 
 

𝐸𝑠,𝑧(𝒓) = −
2𝑗𝑘0(

𝐷

2
)

3

3𝜋

(𝒓×𝑯0)𝑧

𝑟2(𝑟2−(
𝐷

2
)

2
)

1/2      (12.9)   

and 

𝑯𝑠,tan(𝒓) =
𝑯0

𝜋
[𝑎𝑟𝑐𝑠𝑖𝑛(𝐷 2𝑟⁄ ) − 𝐷 2𝑟2 (𝑟2− (

𝐷

2
)

2
)

1/2

⁄ ] −
𝐷3𝒓(𝑯0∙𝒓)

4𝜋𝑟4(𝑟2−(
𝐷

2
)

2
)

1/2 . (12.10) 

 
Note that the coordinate z is perpendicular to the plane of the aperture. These scattering fields represent 
the excitation fields that enable sub-wavelength resolution in the near-field and are thus the foundation 
for NSMM calculations.  
 
Presently, inverse, near-field problems are well addressed for acoustic waves, but much less so for 
electromagnetic waves. Thus, inverse, near-field solutions for scanning electromagnetic probe microscopy 
applications are in the early stages of development. The development of calibration procedures for the 
corresponding measurements lags even farther behind. Therefore, we will limit our discussion to a few 
existing, theoretical treatments that are applicable to NSMM tomography. Most NSMM measurements 
are performed in a configuration in which the incident electromagnetic wave interrogates the material 
and the receiver detects the reflected or transmitted signal. The measured quantities are either the 
change of the reflection/transmission coefficients or the frequency shift of a resonant cavity. As discussed 
in previous chapters, these measurands reflect variations in the material parameters of the sample. This 
applies to both surface and subsurface characterization, but the subsurface problem is more complicated.  
 
For three-dimensional electromagnetic tomography, two steps are required to find a solution. First the 
forward problem is solved: the electromagnetic fields are determined for a known configuration and 
known material parameters.  In the second step, the inverse problem is treated based on the forward 
problem solutions (The above solutions for the cases of an elementary dipole and scattered waves at an 
aperture are examples of forward problem solutions).  More specifically, the philosophy of this approach 
is as follows. The solution of the forward problem determines the signals measured by the NSMM or other 
detectors for known distributions of the conductivity, permittivity and permeability in the object space. 
The solution to the inverse problem determines the distributions of the electromagnetic materials 
parameters within the object space from the detected signal, resulting in image reconstruction. For 
NSMM, work in this area is ongoing. It is necessary to keep in mind that inverse problems are inherently 
nonlinear and from the point of view of numerical computation ill-posed. As a reminder to the reader, a 
problem is ill-posed when one of the following conditions is satisfied: (a) a solution does not exist, (b) 



solutions exist, but are not unique, or (c) the solution is unstable or overly sensitive to small changes in 
measured data. The latter condition may result in solutions that do not remain valid after small 
perturbations. Therefore, regularization methods have to be implemented. There are several critical 
issues such as confirmation of the uniqueness of the solution, stabilization of the problem, and 
determination of the approximate solution to such a stabilized problem. These are not simple tasks [11].  
 
12.2.4 Solution to the forward problem  
 
In general, electromagnetic tomography requires the solution of a nonlinear, multidimensional problem 
for a particular configuration. Therefore, few if any fundamental theoretical approaches can be 
introduced that have universal validity. In the broadest sense, most cases require the solution of a basic 
equation, taking into account specific electromagnetic field distributions and boundary conditions.  In 
finding this solution, the objective is to predict the values that will be measured by a given detection 
system for a known distribution of conductivity, permittivity and permeability in the object space. 
Information about the field distribution can be obtained from an appropriate analytical model of the 
system or through numerical calculations such as finite element simulations. From the experimental point 
of view, there important questions related to the feasibility of direct measurement of the fields. Can one 
accurately and directly measure two-dimensional distributions of electric and magnetic fields as a function 
of the frequency and current distributions within the source and the receiver? Alternately, can one 
indirectly measure the re-radiated fields from material samples or changes of the impedance, e.g. by use 
of a scanning antenna? The forward problem solution must be thoroughly studied over a wide parameter 
space in order to develop as complete an understanding of the near-field detection system as possible. 
Insight is required into physical principles, detectability limits and sensitivity maps in order to provide a 
sound basis for sensitivity analysis and quantitative image reconstruction algorithms of embedded, 
subsurface objects. 
 
The fields for the specific configurations and the corresponding boundary conditions are naturally derived 
from solution of Maxwell’s equations. Above, we already introduced the near-field components that 
follow from the field of an elementary antenna and a small aperture that are relevant for the specific case 
of NSMM applications. In general, the electric and magnetic fields can be expressed following Reference 
[6] though integral equations. These expressions apply to a finite, inhomogeneous scatterer and can be 
expressed for electric field component as  
  

𝑬(𝒓) = 𝑬𝒊𝒏𝒄(𝒓) + 𝑬𝒔𝒄𝒂𝒕(𝒓) = 𝑬𝒊𝒏𝒄(𝒓) + ∫ 𝑑𝒓′𝑮𝑬(𝒓, 𝒓′)[𝒌𝒔
2(𝒓′) −

𝑽

𝒌𝟎
2]𝑬(𝒓′) − ∫ 𝑑𝒓′𝑮𝑬(𝒓, 𝒓′)[𝒌𝒔

2(𝒓′) − 𝒌𝟎
𝟐](𝝁𝛻𝝁−1)

𝑽
× [𝛻 × 𝑬(𝒓′)]  , (12.11) 

 

where wavenumber 𝑘𝑠 = √𝜔2𝜇𝜀 is the function of the position within the inhomogeneous region and 𝑘0   
is the wavenumber of the surrounding medium. The permeability 𝜇 and the permittivity 𝜀 can be in 
general tensors and are also functions of positions inside the inhomogeneous region. Similarly, the 
corresponding expression for the magnetic field is obtained by replacing the electric field Green’s function 
with a corresponding magnetic field Green’s function and by modifying the coefficient in front of the 
integral. The dyadic Green’s function 𝑮(𝒓, 𝒓′) is a solution of the equation 
 

𝛁 × 𝛁 × 𝑮(𝒓, 𝒓′) − 𝑘0
2 𝑮(𝒓, 𝒓′) = 𝑰𝛿(𝒓 − 𝒓′)     (12.12) 

 
with 𝑰 the identity dyadic. The solution is 
 



𝑮(𝒓, 𝒓′) = [𝑰 +
𝛻𝛻

𝑘0
𝟐] 𝑔(𝒓, 𝒓′);   𝑔(𝒓, 𝒓′) =

𝑒−𝑗𝑘0|𝒓−𝒓′|

4|𝒓−𝒓′|
= 𝜙(|𝒓 − 𝒓′|) . (12.13) 

 
For a homogeneous medium, the Green’s function in equation (12.13) is reduced to 𝑔(𝒓, 𝒓′). This Green’s 
function can be also expressed in terms of Bessel and Hankel functions as it was introduced earlier in 
equation (12.6). For constant permeability 𝜇, Equation (12.11) is reduced to   
 

𝑬(𝒓) = 𝑬𝒊𝒏𝒄(𝒓) + ∫ 𝑑𝒓′𝑮𝑬(𝒓, 𝒓′)[𝒌𝒔
𝟐(𝒓′) − 𝒌𝟎

𝟐]𝑬(𝒓′)
𝑽

    (12.14) 

 
In the preceding  equations, 𝑬𝒊𝒏𝒄(𝒓) is usually known (see the introduced near-fields applicable to NSMM 
problems), but the total field is unknown and as follows from (12.14) is a part of the integral as well.  In 

the case when |𝒌𝒔
𝟐(𝒓′) − 𝒌𝟎

𝟐| is small, one can approximate  𝑬(𝒓) ≅ 𝑬𝒊𝒏𝒄(𝒓) and the field can be 
expressed as  
 

𝑬(𝒓) =  𝑬𝒊𝒏𝒄(𝒓) + ∫ 𝑑𝒓′𝑮𝑬(𝒓, 𝒓′)[𝒌𝒔
𝟐(𝒓′) − 𝒌𝟎

𝟐]𝑬𝒊𝒏𝒄(𝒓′) =
𝑽

= 𝑬𝒊𝒏𝒄(𝒓) + ∫ 𝑲𝑬(𝒓, 𝒓′)𝑬𝒊𝒏𝒄(𝒓′)𝒅𝒓′ = 𝑬𝒊𝒏𝒄(𝒓) + 𝑬𝒔𝒄𝒂𝒕(𝒓)
𝑽     . (12.15) 

 
This is known as the first Born approximation and represents the first correction term that is obtained by 
use of perturbation theory and usually it is justified in long wavelength solutions. For the solution of near 
filed problems where they are treated as electrostatic problem usually it is justified to be used. Note that 
we introduced the electric field kernel of the integral 𝑲𝑬(𝒓, 𝒓′).  If necessary, higher order correction 
terms can be obtained through an iterative procedure. The solution for the magnetic field may obtained 
by an analogous approach.  
 
As follows from equation (12.15), the problem is reduced to the solution of a three dimensional integral 
equation. Through a Fourier transform, the problem may be further simplified to a one-dimensional 
Fredholm integral equation of the first kind, as will be shown later in the text. An illustration of near-field 
tomography performed by use of a cantilever-based scanning probe system is shown in Fig. 12.1. The 
scanning probe is positioned over the half space with embedded non-uniformities [12]. Assume that the 
measured two-dimensional distribution of the measured signal is a function of a parameter h representing 
the distribution of the material properties in the scanned volume. In this case the relation of the measured 
signal R with respect to any field component and material parameters, represented, say, through 
permittivity, can be expressed as [12] 
 

𝑅(𝑥, 𝑦, ℎ) = ∫ 𝐾(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧′, ℎ)𝜀(𝑥′, 𝑦′, 𝑧′)𝑑𝑥′, 𝑑𝑦′, 𝑑𝑧′
𝑉′   ,  (12.16) 

 
where kernel K contains the instrumental response and  𝜀(𝑥′, 𝑦′, 𝑧′) represents the unknown parameters 
of the material to be obtained. Equation (12.16) is the three-dimensional Fredholm’s integral equation. 
This equation is known to be an ill-posed, complicated problem that usually requires additional a priori 
information about possible, correct solutions. The two dimensional Fourier transform of Eq. (12.16) leads 
to [12] 
 

𝑅̃(𝜅𝑥, 𝜅𝑦, ℎ) = 4𝜋2 ∫ 𝐾̃(𝜅𝑥, 𝜅𝑦, 𝑧′, ℎ). 𝜀(̃
0

−∞
𝜅𝑥, 𝜅𝑦 , 𝑧′)𝑑𝑧′ ,  (12.17) 

 
where  



 

𝑅̃(𝜅𝑥, 𝜅𝑦, ℎ) =
1

4𝜋2 ∬ 𝑅(𝑥, 𝑦, ℎ)exp (−𝑗𝜅𝑥 − 𝑗𝜅𝑦𝑦)𝑑𝑥𝑑𝑦 ,  (12.18a) 

𝜀̃(𝜅𝑥, 𝜅𝑦, ℎ) =
1

4𝜋2 ∬ 𝜀(𝑥, 𝑦, ℎ)exp (−𝑗𝜅𝑥 − 𝑗𝜅𝑦𝑦)𝑑𝑥𝑑𝑦  ,  (12.18b) 

𝐾̃(𝜅𝑥 , 𝜅𝑦, ℎ) =
1

4𝜋2 ∬ 𝐾(𝑥, 𝑦, ℎ)exp (−𝑗𝜅𝑥 − 𝑗𝜅𝑦𝑦)𝑑𝑥𝑑𝑦 .  (12.18c) 

 
Provided that the kernel and solution satisfy certain conditions of regularity, it is possible to define the 
periodic continuation of these functions and use the two-dimensional, fast Fourier transform to evaluate 
these integrals. 
 
Figure 12.1. Near-field tomography performed by use of a scanning probe system. A schematic of a 
microcantilever probe positioned above a sample under test. Assorted subsurface, embedded structures 
are shown in white. 
 
12.2.5 Solution to the inverse problem  
 
In the next steps, Equation (12.17) is solved for each pair of  𝜅𝑥, 𝜅𝑦 as a function of the depth profile of 

𝜀̃(𝜅𝑥, 𝜅𝑦, 𝑧′) and finally inverse Fourier transformed into 𝜀𝑠𝑐𝑎𝑡(𝑥, 𝑦, 𝑧) = ∬ 𝜀𝑠𝑐𝑎𝑡̃(𝜅𝑥, 𝜅𝑦, 𝑧)exp (𝑗 𝜅𝑥𝑥 +

𝑗𝜅𝑦𝑦)𝑑𝜅𝑥𝑑𝜅𝑦 . Following the Tikhonov’s regularization [13], [14], the approximate solution of equation 

(12.17) is obtained from the minimum of the functional  
 

𝑀𝛼[𝜀̃] = ‖4𝜋2𝐾𝜐̃𝜀̃ − 𝑅̃𝛿‖
2

𝐿2
+ 𝛼‖𝜀̃‖𝑊2

1
2   ,     (12.19) 

 

where 𝑅̃𝛿 are the measured values with an error 𝛿 . The parameter 𝜐 is the  error in the estimate of the 

kernel operator 𝐾̃. 𝐿2 and 𝑊2
1 are the corresponding metrics. The parameter 𝛼 has to be found under 

additional condition of given knowledge of measurement errors and the operator errors 
 

‖4𝜋2𝐾𝜐̃𝜀̃ − 𝑅̃𝛿‖
2

𝐿2
= (𝛿 + ℎ‖𝜀̃‖𝑊2

1
2 )2       (12.9a) 

 
The quality of the inverse problem solution depends on the values of error estimates 𝛿 and 𝜐. In the limit 
where 𝛿, 𝜐 → 0, the solution approaches the correct one. The error parameter 𝜐 is usually estimated from 
the numerical solution of the forward problem. The estimate of the experimental error 𝛿 can be obtained 
from [12] 
 

𝛿2 =
1

∆ℎ
∬ 𝑑𝜅𝑥𝑑𝜅𝑦𝜅𝑥,𝜅𝑦

∫ [𝛿𝑅̃(ℎ, 𝜅𝑥, 𝜅𝑦)]
2

𝑑ℎ
ℎ

     (12.20) 

 

with 𝛿𝑅̃(ℎ, 𝜅𝑥 , 𝜅𝑦) = 𝑅̃(ℎ, 𝜅𝑥 , 𝜅𝑦) − 𝑅̃𝛿(ℎ, 𝜅𝑥, 𝜅𝑦). The resulting parameter distribution is obtained from 

inverse Fourier transform of 𝜀̃. At this point, it is necessary to stress once again, that though solutions can 
be found for specific problems, a general solution is not possible due to the complexity and nonlinearity 
of the problem. In addition, when calculating numerical solutions to these equations, it is necessary to 
implement the stingiest possible conditions on the discretization of the material domain.  
 
When the wavelength of the incident wave is much smaller than the size of the subsurface inhomogeneity 
𝑘0𝑎 = 2𝜋𝑎 𝜆⁄ ≫ 1 (where a is the dimension of the scattering object), the electromagnetic problem can 
be reduced to the study of the scalar wave equation. Under these conditions, the problem can be reduced 



to Rytov approximations, i.e. the phase perturbation is a linear functional of the object. Because the Rytov 
approximation is not valid for NSMM, we are not going to discuss the details of this approach.  
 
The above approximations were introduced because of their mathematical simplicity. However, it is 
necessary to remember that these assumptions essentially ignore the fact that there are multiple 
reflections of the electromagnetic radiation. In order to account for multiple reflections, it is necessary to 
reformulate the problem as a nonlinear optimization problem. This requires the solution of the direct 
scattering problem for different domains of the embedded structures by use of iterative protocols. At 
each step of the iterative procedure, a solution to the scattering problem must be obtained. Clearly, this 
is a tedious, time-consuming process. Some progress has been obtained by separating the problem into 
an ill-posed linear part and a well-posed nonlinear part. This strategy avoids the solution of the direct 
scattering problem at each iteration step [15], [16], [17].  For NSMM, one can safely assume the 
condition 𝑘0𝑎 = 2𝜋𝑎 𝜆⁄ ≤ 1, leading to solution of diffraction problems within the so called resonance 
regime. Mathematical methods in the resonance regime are significantly different from problems where 
the Rytov condition is valid. In particular, in NSMM it is not necessary to take into account the possibility 
of existence of shadows behind the scattering object. We will return to this solution when discussing the 
multifrequency approach later in the text. In the following sections, we address two specific cases that 
apply to NSMM measurements. 
 
12.2.6 Linear inverse problem solutions from frequency shift measurements 
 
We start with a simple case, namely linear inverse problems. It is assumed that the only fields that are 
measureable lie outside of the scatterer, i.e. they lie outside of the material or device under test. This is 
the situation in most experiments. The general nonlinear problem can be significantly simplified if the 
scattered field can be approximated as a linear functional of the object. The goals of inverse tomographic 
problems include global quantitative and qualitative image reconstruction of the internal constituents of 
an object. Additional objectives include reconstructions of the object boundary and localized, internal 
inclusions. Specific examples of these goals include mapping of embedded material properties such as 
complex permittivity and detection of subsurface voids in electrical circuits. In order to pinpoint a 
localized, subsurface object, the inverse problem requires as inputs a given set of measurements that are 
made as a function of parameters in addition to position. In NSMM, the frequency is the most common 
such parameter. The localization of a subsurface object may be described by a position-dependent, 
characteristic function. In the simplest form, this function is equal to one at positions where the object is 
present and equal to zero elsewhere. This function’s form may be customized for certain types of 
problems, e.g. the function may take on any real value [18], [19].  
 
Experimentally, the first step in subsurface mapping of electromagnetic material distributions is to 
measure the two-dimensional, transverse distribution of the scattered field as a function both of position 
along the media interface (x and y) and frequency (f). In this case, f serves as the depth-sensitive 

parameter, due to the skin depth effect. Recall that the skin depth is given by 𝛿 = √2𝜌 𝜔𝜇⁄  with 𝜌 being 
the resistivity of the conductor, 𝜔 the angular frequency and 𝜇 the permeability of the conductor. As 
applied to NSMM, the details of the inverse method depend on how the measurement has been done. 
Common approaches include the measurement of the frequency shifts of the resonator or the 
measurement of the complex impedance via the reflection coefficient. For measurement of the frequency 
shifts, most of the corresponding inverse scattering problems can be formulated by the equation [20], 
[21] 
 

[𝑶𝒔][𝝐] = [∆𝑭]  .       (12.21) 



 
[∆𝑭] = (∆𝑓1, ∆𝑓2, … . ∆𝑓𝑁) is the vector of measured frequency shifts at a given position on the sample, 
and [𝑶𝒔] is the direct, forward problem vector operator that determines the frequency shifts from the 
vector of given material parameters, [𝝐] . In the case of Reference [19], [𝝐] it is a permittivity vector. The 
operator [𝑶𝒔] has to be calculated using numerical or analytical physical models of the forward problem 
for the given subsurface geometry. If the problem is linearized, [𝑶𝒔] is a constant, ill-posed matrix, and 
therefore the solution can’t be obtained by the standard algebraic procedure of simply multiplying the 
equation from the left with inverse matrix. To regularize the problem, an alternate vector [𝝐̂] may be 
defined in place of [𝝐] by use of a minimization algorithm [18]: 
 

[𝝐̂] = arg 𝑚𝑖𝑛(∑ (∆𝑓𝑘(𝝐) − ∆𝑓𝑘
𝑚𝑒𝑎𝑠)2𝑁

𝑘=1 ) .    (12.22) 

 
Here ∆𝑓𝑘(𝝐) are calculated values of frequency shift and ∆𝑓𝑘

𝑚𝑒𝑎𝑠 are the corresponding measured values. 
The authors of Reference [18] used Levenberg-Marquardt algorithm in the iteration procedure  
 

[𝝐̂]𝑖+1 = [𝝐̂]𝑖 + ([𝑨]𝑖
𝑇[𝑨]𝑖 + 𝛼[𝑰])−1[𝑨]𝑖

𝑇
([𝑺][𝝐̂]𝑖 − [∆𝑭]𝑚𝑒𝑎𝑠)  . (12.23) 

 
[∆𝑭]𝑚𝑒𝑎𝑠 = (∆𝑓1

𝑚𝑒𝑎𝑠, ∆𝑓2
𝑚𝑒𝑎𝑠, … . ∆𝑓𝑁

𝑚𝑒𝑎𝑠) is a vector of experimentally measured frequency shifts,  

[𝑨] is the matrix with elements 
𝜕∆𝑓𝑘

𝜕𝜀𝑗
|𝜀𝑖̂

, 𝑘 = 1,2, … 𝑁, 𝑗 = 1,2, … 𝑀, I is the identity matrix and 𝛼 is the 

Marquardt regularization parameter. The calculation of the [𝑨] matrix is not easy and therefore one can 
use the approximation [𝑨]𝑖 = [𝑨]0 to simplify the problem. In addition, within the iteration process the 
values of 𝜀𝑗̂ could lead to unphysical values, such as a relative permittivity less than one. Therefore it is 

necessary in the iteration process to bound the values 𝜀𝑗̂ such that of 𝜀𝑚̂𝑖𝑛  <𝜀𝑗̂ < 𝜀𝑚̂𝑎𝑥, where the limiting 

cases correspond to physically reasonable minimum and maximum values of the subsurface structure. In 
the specific case where 𝜀𝑗̂ corresponds to permittivity, the regularization projection operator 𝜺𝑅 = 𝑹𝑃(𝜺) 

may be introduced: 
 

𝜀𝑖
𝑅 = {

 𝜀𝑚𝑖𝑛  𝜀𝑖 < 1
𝜀𝑚𝑎𝑥 

𝜀𝑖        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜀𝑖 > 𝜀𝑚𝑎𝑥  for i = 1,2, …M .    (12.24) 

Given the preceding analysis, including the introduced assumptions, the final iteration formula is: 
 

[𝝐̂]𝑖+1 = 𝑹𝑃([𝝐̂]𝑖 + ([𝑨]0
𝑇[𝑨]0 + 𝛼[𝑰])−1[𝑨]0

𝑇
([𝑺][𝝐̂]𝑖 − [∆𝑭]𝑚𝑒𝑎𝑠)) . (12.25)  

 
In solving the inverse problem, special treatment is required for the edges of the embedded structure. It 
may seem to be enough to fill the area within known surface with parameter (value of permittivity in the 
case that the object is dielectric) and reduce the problem to selection of finding the optimal 𝜀 values. In 
the case that not all edges are known a priori, this approach would fail, but it can be made to behave 
correctly if the regularization coefficients α in Equation (12.23) are properly selected. The greater values 
of α provide increased smoothing within the given area. Note that an additional, implicit parameter 
representing the effective probe tip (or antenna) diameter also enters the calculations. 
 
12.2.7 Inverse problem solutions from multi-frequency or multipoint scattering field data 
 
The preceding discussion relates to the reconstruction of subsurface information from the measured 
frequency shift at each probe position on a grid in two-dimensional space. Another experimental 
approach to the inverse problem is to measure the reflection coefficient within the experimental grid 



using a multi-frequency approach. To illustrate this approach, consider NSMM imaging of an object 
confined in a subsurface volume that is surrounded by a uniform domain. Frequency is an easily controlled 
parameter in NSMM. Therefore, one natural approach to this imaging problem is measurement of two-
dimensional, scattered signal for a number of incident fields of different frequencies, indexed by i = 1, 2, 
…..N. For an NSMM probe, this can be modeled through elementary dipoles that are expressed through 
one of the field components of a transverse electric (TE) or transverse magnetic (TM) field. In such a case, 
we can reduce the calculation to a formulation component represented in terms of a scalar variable 𝑢 
alone [18]. As in previous cases, one has to start with the solution of the forward problem. For each 
incident excitation, indexed by j, the forward problem can be expressed as [18] 
 

𝑢𝑖(𝒓) = 𝑢𝑖
𝑖𝑛𝑐 + 𝑘𝑖

𝟐
∫ 𝑑𝒓′𝑮𝒊(𝒓, 𝒓′)𝜒𝑖(𝒓′)𝑢𝑖(𝒓′)

𝑉𝐷
 .   (12.26) 

 
The integral is over the bounded, simply-connected domain VD within which the object is embedded. 

𝑮𝑖(𝒓, 𝒓′) is the Green’s function of the uniform background medium 𝑮𝑖(𝒓, 𝒓′) =
𝑗

4
𝐻0

(1)
(𝑘𝑖|𝒓 − 𝒓′|) at 

frequency i and  
 

𝜒𝑖(𝒓′) = [
𝑘𝟐(𝒓′,𝑘𝑖)

𝑘𝑖
𝟐 − 1] ,       (12.27) 

 
with 𝑘𝑖 = 𝜔𝑖√𝜀𝜇 . In a simple, practical case where the scatterer is a nonmagnetic medium, the material 
properties may be represented by a function of the form 𝜒𝑖(𝒓′). This function incorporates both 
permittivity and conductivity and can be expressed as 
 

𝜒𝑖(𝒓′) =
𝜀(𝒓′)−𝜀

𝜀
− 𝑗

𝜎(𝒓′)

𝜔𝑖𝜀
 ,      (12.28) 

 
where 𝜀, 𝜇 are the permittivity and permeability of the lossless host material and 𝜀(𝒓′) and 𝜎(𝒓′) are the 
permittivity and conductivity of the scatterer. From the definition of 𝜒𝑖(𝒓′), it follows that if 𝒓 is not within 
the volume of the scatterer, then 𝜒𝑖  vanishes. It is important to remember that the position and 
composition of the scatterer is not known a priori. All that is known is that  𝜒𝑖  vanishes outside of the 
scatterer. The scattered fields outside of the volume VD [17], measured at a discrete number of points at 
each frequency is given by 
 

𝑀𝑖(𝒓) = 𝑘𝑖
2 ∫ 𝑑𝒓′𝑮𝒊(𝒓, 𝒓′)𝜒𝑖(𝒓′)𝑢𝑖(𝒓′)                          𝒓 ∈ 𝐶

𝑉𝐷
       (12.29) 

 
where r is from the measurement domain C representing surface, curve or a discrete collection of points 
outside of volume VD where the scattered field 𝑀𝑖(𝒓) is measured. 
 
Strictly, this relation applies only in an ideal case free from noise and errors. Next, following the shortened 
operator annotation of Reference [17], we will rewrite the equations in a form 
 

𝑢𝑖 = 𝑢𝑖
𝑖𝑛𝑐 +  𝐺𝑖

𝑉𝐷 𝜒𝑖𝑢𝑖           𝑟 ∈ 𝑉𝐷 .     (12.30) 

 
The corresponding equation for the measured fields takes the form 
 

𝑀𝑖 = 𝐺𝑖
𝐶𝜒𝑖𝑢𝑖                           𝑟 ∈ 𝐶 .     (12.31) 

 



The only known variables in these equations are the incident fields 𝑢𝑖
𝑖𝑛𝑐, the measured data 𝑀𝑖, and 

wavevector 𝑘𝑖. Equation (12.29) can solved for the unknown variable 𝑢𝑖: 
 

𝑢𝑖 = (𝐼 − 𝐺𝑖
𝑉𝐷 𝜒𝑖)−1𝑢𝑖

𝑖𝑛𝑐 .      (12.32) 

 
By inserting (12.32) into (12.31), it becomes 
 

𝑀𝑖 = 𝐺𝑖
𝐶[𝜒𝑖(𝐼 − 𝐺𝑖

𝑉𝐷 𝜒𝑖)−1𝑢𝑖
𝑖𝑛𝑐]  .     (12.33)  

    
Equation (12.33) is a nonlinear equation. Approximating  
 

(𝐼 − 𝐺𝑖
𝑉𝐷 𝜒𝑖)−1 ≈ 𝐼        (12.34) 

 
leads to a linearized form in the Born approximation [17]. Alternately, one may use an iterative approach 
 

(𝐼 − 𝐺𝑖
𝑉𝐷 𝜒𝑖,𝑛)−1 ≈ (𝐼 − 𝐺𝑖

𝑉𝐷 𝜒𝑖,𝑛−1)−1  ,    (12.35) 

 
which represents the iterative Born method. Meanwhile, the first order Taylor expansion (linearization) 
in terms of ∆𝜒𝑖,𝑛 = 𝜒𝑖,𝑛 − 𝜒𝑖,𝑛−1: 
 

(𝐼 − 𝐺𝑖
𝑉𝐷 𝜒𝑖,𝑛)−1 ≈ [𝐼 + (𝐼 − 𝐺𝑖

𝑉𝐷 𝜒𝑖,𝑛−1)
−1

𝐺𝑖
𝑉𝐷 ∆𝜒𝑖,𝑛](𝐼 − 𝐺𝑖

𝑉𝐷 𝜒𝑖,𝑛−1)−1  (12.36) 

 
leads to Newton-Kantorovich method [18]. 
 
Note that the forward problem has to be solved at each iterative step in the methods described so far. 
Significant effort has been made in order to introduce approaches that do not require the solution of the 
forward problem. One approach is to introduce a variable wi:  𝜒𝑖𝑢𝑖 = 𝑤𝑖 and rewrite equations (12.31) 
and (12.32) in terms of 𝑤𝑖. Then   
 

𝜒𝑖𝑢𝑖𝑛𝑐 = 𝑤𝑖 − 𝜒𝑖𝐺𝑖
𝑉𝐷𝑤𝑖  .      (12.37) 

 
The next step is to define the cost functional 
 

𝐹 =
∑ ‖𝑀𝑖−𝐺𝑖

𝐶𝑤𝑖‖
𝐶

2
𝑖

∑ ‖𝑀𝑖‖2
𝐶𝑖

+
∑ ‖𝜒𝑖𝑢𝑖𝑛𝑐−𝑤𝑖+𝜒𝑖𝐺𝑖

𝑉𝐷𝑤𝑖‖
𝑉𝐷

2

𝑖

∑ ‖𝜒𝑖𝑢𝑖𝑛𝑐‖
2

𝑉𝐷
𝑖

     (12.38) 

 
and minimize it. The operation ‖. ‖ denotes the norm on the respective domains with the normalization 
chosen in a way that 𝑤𝑖 = 0. The first term in equation (12.38) represents the error in the measurement 
equations and the second term represents the error in the equations due to change of the variable to 𝑤𝑖. 
This equation is highly nonlinear and the minimization of the cost function is found iteratively. The process 
is quite involved and the interested reader can find further details in Reference [18].  
 
12.2.8 Inverse problem solutions from multi-frequency scattering field data 
 
In Reference [22], the three-dimensional permittivity distribution was determined from multi-frequency 
data. The inverse problem was solved by use of two-dimensional, lateral plane decomposition of 



corresponding Green’s functions. This strategy effectively reduces the three-dimensional integral 
equation to one-dimensional Fredholm integral equation of the first kind relative to the depth profile of 
the lateral permittivity spectrum. The foundation for this approach was introduced in Reference [23] and 
complements the general case, introduced earlier (see Equations (12.16) through (12.20)) [12]. One way 
to treat complex, electromagnetic, three-dimensional reconstruction problems is plane wave 
decomposition in k-space and the use of evanescent waves. Here, it turns out that it is advantageous to 
use the probing field of a near-field source in place of the decomposition into plane evanescent waves. 
The procedure is inherently dependent upon data acquisition. Two methods of data acquisition are 
proposed: a multi-frequency approach and a multilevel approach. The former is two-dimensional, lateral 
scanning at several frequencies. The latter is two-dimensional scanning at several heights above the 
investigated area. Here, it is worth mentioning that the depth sensitivity of near-field measurements 
further depends on transfer functions of the source (determined mainly by their dimensions) and on the 
source–receiver distance.  
 
As before, the solution of the inverse problem starts with Born approximation followed by an iterative 
solution based on one dimensional equations. The solution is similar to one expressed in general in 
Equations (12.12) through (12.16) and follows from the convolution of the current distribution of the 
source and the Green’s function in Equation (12.13). A text-book vector potential can be expressed inside 
a volume V’ in the k-space representation in plane wave expansion as  
 

𝑨(𝑥, 𝑦, 𝑧) = 𝜇 ∫ 𝑱(𝒓′)
𝑗

2𝜋
∫

∞

−∞ ∫ 𝑒𝑗𝑘𝑥(𝑥−𝑥′)+𝑗𝑘𝑦(𝑦−𝑦′)∞

−∞𝑉′

𝑒𝑥𝑝{±𝑗√𝑘2−𝑘𝑥
2−𝑘𝑦

2(𝑧−𝑧′)}

√𝑘2−𝑘𝑥
2−𝑘𝑦

2
𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝒓′ . 

(12.39) 
 
The sign in the exponential function is positive for (𝑧 − 𝑧′) > 0 and negative at(𝑧 − 𝑧′) < 0. In addition, 

𝑘𝑧 = √𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2. From the vector potential, as before, it is possible to calculate the electric field in 

the form of a plane wave decomposition as a sum of the TM and TE wave field components. Following 
equation (12.15) and introducing an effective current source 𝑱𝑒𝑓𝑓(𝒓) = 𝑗𝜔𝜀𝑠𝑐𝑎𝑡(𝒓)𝑬(𝒓). In general, 𝑬(𝒓) 

is the total electric field that is in this case composed from the incident and scattered fields. The situation 
simplifies if the total field can be replaced by the incident field 𝑬𝟎(𝒓). Additional simplification follows 

from the near-field assumption by neglecting the 𝑒𝑗𝑘𝑟 component for kr << 1 and use the elementary 
dipole field distributions as the incident field. The Fourier transformation of the scattered fields in the first 
order Born approximation can be expressed as [12]  
 

𝑬𝒔𝒄𝒂𝒕(𝜅𝑥, 𝜅𝑦, 𝑧) =
1

𝑗𝜔𝜀0
∫ 𝑮𝑬̃

0

−∞
(𝜅𝑥, 𝜅𝑦, 𝑧, 𝑧′)𝑱𝑒𝑓𝑓(𝜅𝑥, 𝜅𝑦, 𝑧′)𝑑𝑧′    (12.40) 

 
and 
 

𝑯𝒔𝒄𝒂𝒕(𝜅𝑥, 𝜅𝑦, 𝑧) = ∫ 𝑮𝑯̃
0

−∞
(𝜅𝑥, 𝜅𝑦, 𝑧, 𝑧′)𝑱𝑒𝑓𝑓(𝜅𝑥, 𝜅𝑦, 𝑧′)𝑑𝑧′ .  (12.41) 

 
Here, 𝜀0 is the constant permittivity of the host material. For a multilayer medium, as shown in Fig. 12.2, 
the detailed expressions and the corresponding derivation of the fields in the different layers of the 
multilayer medium may be found in the original papers [22], [23]. Here, we will present just the final 
results for the components of the electric field expressed through the Green’s functions for the total field 
in layer l as generated by a source in layer k of the planar multilayer medium as 



 

𝐸𝑛
𝑙 (𝒓) = ∑ ∫ 𝐽𝑚

𝑘 (
𝑉′𝑚 𝒓′) ∫ ∫ 𝑒𝑗𝑘𝑥(𝑥−𝑥′)+𝑗𝑘𝑦(𝑦−𝑦′)∞

−∞
𝐺𝑚𝑛

𝑘𝑙̃ (𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧′)𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝒓′∞

−∞
=

∑ ∫ 𝐽𝑚
𝑘 (

𝑉′𝑚 𝒓′)𝐺𝑚𝑛
𝑘𝑙 (𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧, 𝑧′)𝑑𝒓′  .     (12.42) 

 
where n, m = x, y, z are the field and current components of the corresponding vectors and notice the 
change of the integration variables from 𝜅𝑖 to ki. This total field can be expressed similarly as before as a 
sum of the probing (incident) and scattered fields (see Equation (12.15)) in the kth layer from the target 
in the lth layer in the form 
 

𝐸𝑠𝑐𝑎𝑡𝑛
𝑘 (𝒓) = 𝑗𝜔 ∑ ∫ 𝜀𝑠𝑐𝑎𝑡(𝒓′)𝐸0𝑚

𝑙 (𝒓′)𝐺𝑚𝑛
𝑘𝑙 (𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧, 𝑧′)𝑑𝒓′

𝑉′𝑚  , (12.43) 

 
where 
  

𝐸0𝑛
𝑙 (𝒓) = ∑ ∫ 𝐽𝑚

𝑘 (
𝑉′𝑚 𝒓′)𝐺𝑚𝑛

𝑘𝑙 (𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧, 𝑧′)𝑑𝒓′                 (12.44) 

 
is the source field at lth-layer and 
 

𝐸0𝑛
𝑘 (𝒓) = 𝑗𝜔 ∑ ∫ 𝐽𝑚

𝑘 (
𝑉′𝑚 𝒓′)𝐺𝑚𝑛

𝑘𝑙 (𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧, 𝑧′)𝑑𝒓′  . (12.45) 

 
 
Figure 12.2. Schematic of the inverse scattering problem in a multilayered medium. The inhomogeneities 

in the l-th layer are probed with the field generated by the source and detected by the receiver in the k-

th layer [23]. © IOP Publishing. Reproduced with permission. All rights reserved. 

 
is the source field in the k-th layer of the multilayered medium.  Equation (12.43) can be reduced to a one-
dimensional Fredholm integral equation of the first kind in frequency space by fixing the reference field 
around the receiving point and by fixing the source-receiver vector 𝛿𝒓 as [23] 
 
 

𝐸𝑠𝑐𝑎𝑡𝑛
𝑘 (𝑘𝑥, 𝑘𝑦, 𝑧, 𝛿𝒓) = 𝑗𝜔 ∑ ∫ 𝜀𝑠𝑐𝑎𝑡(

𝑧′ 𝑘𝑥 , 𝑘𝑦, 𝑧′) [∫
∞

−∞ ∫ 𝑒−𝑗𝜅𝑥𝛿𝑥−𝑗𝜅𝑦𝛿𝑦∞

−∞ ∫ 𝐽𝑛
𝑘(𝜅𝑥, 𝜅𝑦, 𝑧′′ − 𝑧 −

𝑧′′𝑚

𝛿𝑧) 𝐺𝑛𝑚
𝑘𝑙 (𝜅𝑥, 𝜅𝑦, 𝑧′𝑧′′)] 𝐺𝑚𝑛

𝑙𝑘 ( 𝜅𝑥 + 𝑘𝑥, 𝜅𝑦 + 𝑘𝑦, 𝑧, 𝑧′)𝑑𝜅𝑥𝑑𝜅𝑦𝑑𝑧′′𝑑𝑧′   (12.46) 

 
 
Equation (12.46) can be used in the solution of the multifrequency scheme of the inverse scattering 
problem. In particular, Equation (12.46) can be expressed as 
 

𝐸𝑠𝑐𝑎𝑡(𝑘𝑥, 𝑘𝑦, 𝜔) = ∫ 𝜀𝑠𝑐𝑎𝑡(
𝑧′ 𝑘𝑥 , 𝑘𝑦, 𝑧′)𝐾(𝑘𝑥 , 𝑘𝑦 , 𝑧′, 𝜔)𝑑𝑧′ ,  (12.47) 

 
where the depth sensitivity is determined by the frequency dependence of kernel K. The data acquisition 
is once again performed with the multilevel approach, i.e. two-dimensional, transverse scanning 
measurements done at different vertical positions z with respect to the k-th layer (please note the 
difference between the index k and the wave vector components kx etc.) In the case of NSMM, the depth 
sensitivity is related to the strong dependence of near-field components of emitted and scattered field 



upon source/receiver-target (probe-sample) distance. The effective normalized scattering permittivity 
can be expressed as [12] 
 

𝜀𝑠𝑐𝑎𝑡
𝑒𝑓𝑓(𝑘𝑥, 𝑘𝑦, 𝑧) = ∫ 𝜀𝑠𝑐𝑎𝑡(

0

−∞
𝑘𝑥 , 𝑘𝑦, 𝑧′)𝐾(𝑘𝑥, 𝑘𝑦, 𝑧′, 𝑧)𝑑𝑧′     . (12.48) 

 
Equations (12.47) and (12.48) should be solved for each pair of spectral components 𝑘𝑥 , 𝑘𝑦 of the 

scattering permittivity spectrum. The details of the numerical procedure for selected properties of the 
embedded dielectric inclusion are beyond the scope of this chapter, but can be found in the literature [22, 
23]. 
 
Now, we will express the source field in terms of the currents across the cross section of the aperture. For 
simplicity, these currents will be assumed to move in only in one direction and to be localized at the 
distance z=z0 from the surface. The surface currents are then  
 

  𝑱𝒔(𝑥, 𝑦, 𝑧) = 𝐽𝑥
𝑠(𝑥, 𝑦, 𝑧)𝛿(𝑧 − 𝑧0)   .     (12.49) 

 
Using the boundary conditions at the surface of the medium (z=0) and expressing the fields through the 
Fresnel transmission coefficients 

 𝑇∥ =
2√𝜀0√𝑘0

2−𝜅⊥
2

𝜀0√𝑘0
2−𝜅⊥

2+√𝑘2−𝜅⊥
2

        (12.50) 

and 

 𝑇⊥ =
2√𝑘0

2−𝜅⊥
2

√𝑘0
2−𝜅⊥

2+√𝑘2−𝜅⊥
2

  ,      (12.51) 

the kernel in (12.54) can be expressed as [12] 
 

𝐾(𝑘𝑥 , 𝑘𝑦, 𝑧) =
𝐾̃(𝑘𝑥,𝑘𝑦,𝑧)

∫ ∬ 𝐾̃(𝑘𝑥,𝑘𝑦,𝑧′)𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑧′0

−∞

  ,   (12.52a) 

 

𝐾̃(𝑘𝑥 , 𝑘𝑦, 𝑧) = ∬ 𝐽𝑥
𝑠(𝜅𝑥 , 𝜅𝑦, 𝑧0)

∞

−∞
𝐽𝑥

𝑠∗
(𝜅𝑥 + 𝑘𝑥 , 𝜅𝑦 + 𝑘𝑦, 𝑧0)

exp (±𝑗√𝑘2−𝜅⊥
2 𝑧±𝑗√𝑘0

2−𝜅⊥
2 𝑧0)

𝑗√𝑘0
2−𝜅⊥

2

×

exp {(±𝑗√𝑘2−(𝜅𝑥+𝑘𝑥)2−(𝜅𝑦+𝑘𝑦)2 𝑧±𝑗√𝑘0
2−(𝜅𝑥+𝑘𝑥)2−(𝜅𝑦+𝑘𝑦)2 𝑧0)

∗

}

(𝑗√𝑘0
2−(𝜅𝑥+𝑘𝑥)2−(𝜅𝑦+𝑘𝑦)2)

∗ × {𝑓𝑥
𝐸𝑖𝑛𝑐(𝜅𝑥, 𝜅𝑦, 𝜀0)𝑓𝑥

𝐸𝑖𝑛𝑐
∗
(𝜅𝑥 + 𝑘𝑥, 𝜅𝑦 +

𝑘𝑦, 𝜀0) + 𝑓𝑦
𝐸𝑖𝑛𝑐(𝜅𝑥, 𝜅𝑦, 𝜀0)𝑓𝑦

𝐸𝑖𝑛𝑐
∗
(𝜅𝑥 + 𝑘𝑥, 𝜅𝑦 + 𝑘𝑦, 𝜀0) + 𝑓𝑧

𝐸𝑖𝑛𝑐(𝜅𝑥, 𝜅𝑦, 𝜀0)𝑓𝑧
𝐸𝑖𝑛𝑐

∗
(𝜅𝑥 + 𝑘𝑥 , 𝜅𝑦 +

𝑘𝑦, 𝜀0)} 𝑑𝜅𝑥𝑑𝜅𝑦         (12.52b) 

 
where 
 
 

𝑓𝑥
𝐸𝑖𝑛𝑐 =

1

𝜅⊥
2 [𝜅𝑥

2(𝑘0
2 − 𝜅⊥

2)𝑇∥ + 𝜅𝑦
2𝑘0

2𝑇⊥]; 𝑓𝑦
𝐸𝑖𝑛𝑐 =

𝜅𝑥𝜅𝑦

𝜅⊥
2 [(𝑘0

2 − 𝜅⊥
2)𝑇∥ − 𝑘0

2𝑇⊥]; 𝑓𝑧
𝐸𝑖𝑛𝑐 =

±𝜅𝑥𝑇∥√𝑘0
2 − 𝜅⊥

2  .       (12.53) 

 



Further details of this approach are given in Reference [24]. The reflected field is again expressed in the 
same form as Equation (12.11). The complex amplitudes of the received signal are expressed as a 
convolution of the scattered field 𝑬𝑠𝑐𝑎𝑡(𝒓) and the instrument function of the receiver F as [22] 
 

𝑠(𝒓𝑟) = ∫ 𝑬𝑠𝑐𝑎𝑡(𝒓′) 𝑭(𝑥𝑟 − 𝑥′, 𝑦𝑟 − 𝑦′, 𝑧𝑟 , 𝑧′)𝑑𝑥′𝑑𝑦′𝑑𝑧′ ,  (12.54) 
 
where 𝒓𝑟 is the vector of the receiver position. Taking into account the expressions for the scattered fields 
due to change of the permittivity of the embedded object and the instrument function the transfer 
spectrum of the measured signal then can be expressed as 
 

𝑠(𝑘𝑥 , 𝑘𝑦, 𝜔) = ∫ 𝜀𝑠𝑐𝑎𝑡(𝑘𝑥, 𝑘𝑦, 𝑧′)𝐾(𝑘𝑥 , 𝑘𝑦,𝑧
′, 𝜔)𝑑𝑧′

𝑧′   .  (12.55)  

 
Following Reference [22], the multifrequency data is transformed to the synthetized pulse  
  

𝑠𝑅𝑒(𝑥, 𝑦, 𝑡) = ℜ{∫ 𝑠(𝑥, 𝑦, 𝜔) exp(𝑗𝜔𝑡) 𝑑𝜔
∞

0
}      (12.56) 

 
 
that can be expressed as a function of the effective depth parameter, provided that one takes into account 
the velocity of the electromagnetic wave propagation in the medium. Clearly, the bounds of the 
integration must span the measured frequency band ∆𝜔. It is possible to try the same transformation in 
(12.39) while including the time dependence t: 
 

𝑠𝑅𝑒(𝑘𝑥, 𝑘𝑦, 𝑧𝑒𝑓𝑓) = ℜ{∫ 𝑠(𝑘𝑥, 𝑘𝑦, 𝜔) exp(𝑗𝜔𝑡) 𝑑𝜔
∞

0
} = ∫ 𝜀𝑠𝑐𝑎𝑡(𝑘𝑥, 𝑘𝑦, 𝑧′)𝐾(𝑘𝑥, 𝑘𝑦,𝑧

′, 𝑧𝑒𝑓𝑓)𝑑𝑧′
𝑧′ ;   

 

𝐾(𝑘𝑥 , 𝑘𝑦,𝑧
′, 𝑧𝑒𝑓𝑓) = ∫ 𝐾(𝑘𝑥 , 𝑘𝑦,𝑧

′, 𝜔)exp(𝑗𝜔𝑡) 𝑑𝜔
∞

0
     (12.57) 

 
where the Kernel in (12.57) is formed from (12.46) after the summation over n,m and integration over 𝜅𝑥 
and 𝜅𝑦 with addition of the instrument function (12.54). Below it is shown how this kernel can be obtained 

from the experiment. The solution of the Fredholm integral Equation (12.55) simplifies when it is known 

that the permittivity of the target  𝜀𝑠𝑐𝑎𝑡
0  is constant. In this case, the problem is reduced to shape retrieval. 

The shape is determined by two space-dependent functions 𝑥1(𝑦, 𝑧) and 𝑥2(𝑦, 𝑧). The k-space 
permittivity spectrum can be written as 
 

𝜀𝑠𝑐𝑎𝑡(𝑘𝑥, 𝑘𝑦, 𝑧) = ∫ ∫ 𝜀𝑠𝑐𝑎𝑡
0 𝑒−𝑗𝑘𝑥𝑥−𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦 = 𝜀𝑠𝑐𝑎𝑡

0 ∫
𝑒−𝑗𝑘𝑦𝑦 

𝑗𝑘𝑥
(𝑒−𝑗𝑘𝑥𝑥1(𝑦) − 𝑒−𝑗𝑘𝑥𝑥2(𝑦))𝑑𝑦

𝑦2

𝑦1

𝑥2(𝑦)

𝑥1(𝑦)

𝑦2

𝑦1
 . 

           (12.58) 
After taking the inverse Fourier transform over 𝑘𝑦  

 

𝜀𝑠𝑐𝑎𝑡(𝑘𝑥, 𝑦, 𝑧) =
𝜀𝑠𝑐𝑎𝑡

0

𝑗𝑘𝑥
(𝑒−𝑗𝑘𝑥𝑥1(𝑦,𝑧) − 𝑒−𝑗𝑘𝑥𝑥2(𝑦,𝑧)) ,   (12.59) 

 
which is equivalent to a system of two real equations. 
 
The kernel in (12.55) can be determined experimentally from the measurement of weakly scattering, thin 
test samples with known shape and permittivity positioned at different depths z0 of the investigated 

region. In this case 𝜀𝑠𝑐𝑎𝑡(𝑘𝑥, 𝑘𝑦, 𝑧) = 𝜀𝑡(𝑘𝑥, 𝑘𝑦)𝛿(𝑧 − 𝑧0) and from (12.55), it follows  

 



𝐾(𝑘𝑥 , 𝑘𝑦, 𝑧0, 𝑧𝑒𝑓𝑓) =
𝑠(𝑘𝑥,𝑘𝑦,𝑧0,𝑧𝑒𝑓𝑓)

𝜀𝑡(𝑘𝑥,𝑘𝑦)
 .     (12.60) 

 
In this way, measurements of the known, thin test samples form the basis for a calibration procedure for 
subsurface permittivity profiling of weakly scattering objects with a constant scattering parameter. 
 
In the case of strong inhomogeneity the Born approximation is not valid, but it can be still applied by an 
iterative algorithm [22], [23] 
 

𝑠(𝑛)(𝑘𝑥, 𝑘𝑦, 𝑧𝑒𝑓𝑓) = 𝑠(𝑘𝑥 , 𝑘𝑦, 𝑧𝑒𝑓𝑓) − ∆𝑠 (𝜀𝑠𝑐𝑎𝑡
(𝑛−1)

, 𝑘𝑥 , 𝑘𝑦, 𝑧𝑒𝑓𝑓) =

∫ 𝜀𝑠𝑐𝑎𝑡
(𝑛)

(
𝑧′ 𝑘𝑥 , 𝑘𝑦, 𝑧′)𝐾(𝑘𝑥, 𝑘𝑦, 𝑧′, 𝑧𝑒𝑓𝑓)𝑑𝑧′       (12.61) 

 

with 𝜀𝑠𝑐𝑎𝑡
(0)

= 0. In this case it is also possible to obtain the kernel experimentally, but the instrumental 
transfer function has to be included at each step of solution for signal correction.   
 
 
12.2.8 Inverse problem solutions from multi-frequency or multipoint scattering reflection coefficient data 
 
 
The approach described above requires minimization of the cost functional based on the measured field 
values over a certain surface or line that lies outside of the volume of the embedded structure. In NSMM, 
most of the time the reflection coefficient or the change of the impedance is the measured, rather than 
the field. In Reference [25], the authors considered the method for NSMM in light of this distinction. As a 
first step, detailed formulas were derived for small antenna fields over multilayer media for TE and TM 
modes. Noting that the measured impedance depends on the complex permittivity, a parametric model 
of the permittivity of the nonmagnetic medium is introduced in the form 
 

𝜀 = 𝜀𝑟(𝑧, 𝒑) − 𝑗
𝜎(𝑧,𝒑)

𝜔𝜀0
 ,       (12.62) 

  
where z is the direction perpendicular to the multilayer stacking and p is a vector of parameters. For 
example, in a discrete, layered medium p might include the thicknesses ti, permittivities εi and 
conductivities σi of the different layers:  
 

𝒑 = {𝑡𝑖, 𝜀𝑖 , 𝜎𝑖, 𝑑𝑒𝑓𝑓}
𝑖=1

𝑁
  .      (12.63) 

 
The effective tip (antenna) diameter 𝑑𝑒𝑓𝑓 is also included as it has to be considered in calculation of the 

impedance. Specifically, when modeling the NSMM interaction with an object through circuit models, the 
capacitance will depend on deff, assuming that the near-field of the aperture is consistent with Equations 
(12.9) and (12.10). One estimate of an effective tip (antenna) diameter deff for a small horizontal antenna 
at distance 𝑧0 from the planar surface, where the magnetic charge and currents are replace by current 
distribution on aperture is given by [26] 
 

 𝒋(𝒓, 𝑧) = 𝜉(𝒓)𝛿(𝑧 − ℎ)𝒖𝑦 = 𝜉0exp (−4𝑟2 𝑑𝑒𝑓𝑓
2⁄ )𝛿(𝑧 − ℎ)𝒖𝑦    (12.64) 

 
where 𝒖𝑦 is the unit vector parallel to the surface and z is the coordinate perpendicular to the surface, 

and 𝜉0 is the maximum amplitude of the surface current.  



 
In the case of a continuous medium with spatially varying conductivity in the form [27]  
 

𝜎 = 𝜎0 + (𝜎𝑚 − 𝜎0)𝑒
−

(𝑧−𝑧0)2

𝑡0
2

  ,     (12.65) 
 
p may have a form 
 

𝒑 = {{𝑡0, 𝑧0, 𝑑𝑒𝑓𝑓, 𝜀𝑟 , 𝜎0, 𝜎𝑚}}  .     (12.66) 

 
𝜎𝑚 is the maximum conductivity. The corresponding cost functional based on measured reflection 
coefficient values has the form 
 

𝐹(𝒑) =
{∑ [(𝑋𝑘(𝒑)−𝑋𝑘

𝑚)2+(𝑅𝑘(𝒑)−𝑅𝑘
𝑚)2]𝐾

𝑘=1 }
1/2

{∑ ((𝑋𝑘
𝑚)2+(𝑅𝑘

𝑚)2)𝐾
𝑘=1 }

1/2      (12.67) 

 

where {𝑅𝑘
𝑚, 𝑋𝑘

𝑚 }𝑘=1
𝐾  are experimental data obtained from measurement of the impedance (as obtained 

from reflection coefficient) at K points and (𝑅𝑘 , 𝑋𝑘) are calculated data from the theoretical analysis for 
the given trial vector parameters p [25]. The values of the elements of p that minimize the functional 
(12.67) are then the estimated parameters the medium under investigation. For all the discussed inverse 
problem solutions the number of frequencies or measurement points depends on the problem at hand. 
The lowest numbers leading to reasonable results can be 2 or 3 [25]. However, increasing the number of 
frequencies or measurement points will improve the precision of the extracted geometric and material 
parameters. The upper limit on the number of measurements is in practice controlled by the experimental 
and data processing capabilities.  
 
12.3 Experimental subsurface tomography with near-field microwave microscopes 
  
Recently, a number of experimental results have been published that demonstrate the subsurface 
tomographic capabilities of NSMM and related RF microscopy techniques. One example of early work on 
subsurface imaging with near-field scanning microwave microscopes was introduced in Reference [28]. 
Although that experiment focused on the demonstration of spatial resolution beyond the diffraction limit, 
the authors studied the imaging of a steel surface as a function of both the frequency and probe sample 
height, necessarily exploring the frequency- and height-dependent inclusion of subsurface regions in the 
sampling volume. The system was modeled as a resonant coaxial line and the interpretation of the 
measurements was based on a standard transmission line theory. A more detailed transmission line 
approach tailored to near-field imaging applications was later developed [25, 26, 27]. Another early 
example introduced the application of scanning capacitance microscopy for subsurface characterization 
of metallic structures [29]. In this work, metallic structures were covered by 1 𝜇m-thick, planarized SiO2. 
Numerical modeling of the capacitance change due to subsurface metallic lines was done with a 
commercial software package. Specifically, the package was used to iteratively solve the static field 
equation ∇[𝜀𝑟𝜀0∇Φ(𝑥, 𝑦)] = −𝜌, where Φ(𝑥, 𝑦) is the electric potential and 𝜌 the charge density. Given 
potential difference V between the probe and buried metallization, the capacitance is calculated from the 
standard electrostatic relation for the stored energy 𝑈𝑒  in the electric field as 𝐶 = 2𝑈𝑒 𝑉2⁄ .  
 
More recently, the application of NSMM to subsurface, nondestructive imaging of truly buried interfaces 
in metallic samples was introduced by Plassard, et al. [30]. Note that depth profiling of high-loss materials 



is in practice much simpler than profiling of low-loss materials. As discussed theoretically above, this is 
due to the fact that the frequency serves as the depth-sensitive parameter and that the skin depth is more 
sensitive to frequency for high-loss materials. The authors of Reference [30] fabricated buried inclusions 
by patterning 20 nm-thick, well-defined aluminum shapes on a Si substrate and subsequently covering 
them with a continuous, planarized, 95 nm-thick Ni film. These samples were then studied by use of 
NSMM operating at frequencies between 1 GHz and 6 GHz.  As the different constituent materials have 
different skin depths for a given operating frequency, properties of the buried interfaces were obtained 
by using a series of different operating frequencies. This approach effectively produces a different “cut” 
of the material at a given depth level corresponding to the selected NSMM frequency.  The measurement 
results are shown in Fig. 12.3. The measured and displayed in the figure is the differential phase of the 
NSMM signal 𝜑 =  𝑧 𝛿⁄ , where z is the position (depth) within the sample and δ is the classical skin depth. 
This technique was also used to investigate a conventional, stainless steel samples [31], [32]. Stainless 
steel samples are often used in highly reactive, non-equilibrium environments that can cause changes in 
the crystalline structure and create oxides at grain boundaries with potential degradation of the material 
properties. The frequency-dependent measurements revealed that the NSMM is sensitive to the presence 
of subsurface oxide domains and enabled estimation of the size of these defects. In summary, these 
measurements demonstrated that NSMM is sensitive to buried interfaces in metallic samples with spatial 
resolution on the order of nanometers. 
 
Figure 12.3. Images of buried Al patterns in a Ni matrix. A schematic diagram of the fabricated structures 

is shown in the upper left corner. The NSMM operating frequencies (f) are listed to the left of each image 

while the corresponding depths (z) are shown on the right. Reprinted figure with permission from C. 

Plassard, E. Bourillot, J. Rossignol, Y. Lacroute, E. Lepleux, L. Pacheco, and E. Lesniewska, Phys. Rev. B 83, 

(2011) art. no. 121409(R). Copyright 2011, American Physical Society. 

 
 
To date, experimental subsurface NSMM has been largely qualitative, as illustrated in the preceding 
examples. There are several ways forward to optimize subsurface imaging with NSMM and establish it as 
a quantitative technique. In Reference [33], the authors applied subsurface imaging to integrated circuits 
and nanoelectronics. Specifically, the focus of the work is on subsurface imaging of back-end-of-line 
processes in integrated circuits. Buried metal lines were imaged through the measurement of local 
capacitance. These measurements were carried out by use of NSMM and scanning Kelvin force 
microscopy. The procedure follows from the idea presented in [29] and the skin depth of microwave 
radiation, introduced earlier in the chapter. In order to put buried line detection on a quantitative footing, 
the authors introduced two test chips with precisely calculable electromagnetic field distributions at the 
surface of the test chips. The first chip design included isolated metal lines and squares of Cr, Al, and Au. 
The first chip represents a calibration artifact with different work functions. The second chip design 
incorporated metallic interconnect lines buried at four different depths within a bulk SiO2 insulator. The 

buried lines were 1.2 m wide and separated by 1.2 m. The second chip was designed to allow biasing 
of the buried interconnect lines in order to produce various patterns of electric and magnetic fields that 
could be imaged with the appropriate scanning probe microscope. The bond pads that provided electrical 
access to these buried interconnects were outside of the scan area, thus providing clearance for probing 
without mechanical interference. The electric field and surface potential distribution was calculated by 
use of a commercial multiphysics simulation package software. The simulations revealed that including 
the physical parameters of the tip significantly lowered the predicted resolution, suggesting that high 
aspect ratio probes are necessary for optimized resolution of lines buried a few micrometers below the 



surface of an insulator. The experimental results with NSMM proved that metal lines buried 2 m under 
the surface of the dielectric can be imaged in reflection mode with reasonable resolution. Note that the 
measurements were done in contact mode. 
 
This work was extended in Reference [34], in which a more detailed analysis is presented. In these latter 

experiments, the buried lines were 1.2 m wide and covered with 0.8 m or 2.3 m silicon dioxide. The 
maximum contrast in the amplitude of the reflection coefficient between the areas with and without the 
buried metal lines was 0.006 dB for the deepest lines and 0.04 dB for the shallower lines. Note that the 
deeper line represented the limit of detection for this technique. To compare the observed experimental 
data with the theoretical prediction the authors used a simple lumped element model of the tip-sample 
impedance that did not take into account the geometry of the tip or changes in the reactive components 
of the tip sample impedance. In spite of these simplifying assumptions, the results from this simple model 
were in qualitative agreement with the observed amplitude and phase changes. The model is based on a 
lumped element description. Several similar models were discussed in more detail in Chapter 9. These 
measurements reaffirmed experimentally and qualitatively from a simple model calculations that NSMM 
has a reasonable sensitivity to metal lines buried under about 1 𝜇𝑚 dielectric layer, but lacks the 
sensitivity to detect such lines buried more than a few micrometers below the surface.  
 
The sensitivity of NSMM to structures buried under metallic layers was studied in Reference [35]. CMOS 

test structures with eight metalized layers and two subsurface, 10 m bus lines were measured by use of 

NSMM at 1.8 GHz. The top two layers that covered the bus lines consisted of a 5 m x 5 m metallic 

square grid, serving as metal fill layers. The 15 m diameter probe was able to detect the bus lines beneath 
the two metal grid layers. 
 
The sensitivity of NSMM to subsurface features will necessarily depend on the frequency dependence of 
the signal-to-noise ratio of the instrument. Consider the resonance condition of a transmission line 
resonator can be expressed as [36]  
 

exp(−𝑗2 𝐿) ΓΓ0 = exp(−𝑗2𝜋𝑛)      (12.68) 
 
where  𝐿 is the resonator length,   is the complex propagation constant of the transmission line, Γ is the 
reflection coefficient corresponding to the tip-sample impedance, Γ0 is the reflection coefficient at the 
resonator input side, and n is the mode number of the resonator resonance. Expressing the propagation 

constant 𝛾 =  𝜔(𝜀0𝜀𝑒𝑓𝑓𝜇0)
1/2

− 𝑗𝛾′′, with 𝜀𝑒𝑓𝑓 equal to the effective permittivity of the transmission 

line, the frequency shift  is 
 

𝛿𝑓

𝑓
=

𝑍0

𝐿√𝜀0𝜀𝑒𝑓𝑓𝜇0
∆𝐶𝑡 ,       (12.69) 

 
where ∆𝐶𝑡 is the change in the tip capacitance, or alternatively in terms of the phase 
 

𝛿𝜃 = 2𝜔𝑍0∆𝐶𝑡         (12.70) 
 

where 𝑍0 is the characteristic reference impedance, often chosen to be 50 . The signal-to-noise ratio 
of the reflection coefficient amplitude increases with frequency. For the phase of the reflection 
coefficient, the signal-to-noise ratio is more or less constant for frequencies up to about 10 GHz and 
decreases for frequencies above 10 GHz. 



 
More general approaches to subsurface imaging exist, as described earlier in this chapter. Significant 
enhancement of the signal-to-noise ratio will require application of the more sophisticated theoretical 
approaches discussed above. One viable experimental approach is to apply a signal to the buried line with 
the same frequency as the NSMM operating frequency. This option further offers the opportunity to 
improve the signal-to-noise ratio through frequency mixing of the signals to the tip and sample. Additional 
options would be available if a second antenna is incorporated into the system.   
  
Reference [37] introduced calibration techniques for quantitative, subsurface, non-contact NSMM 
imaging and tomography applications. The work was an extension of the capacitance calibration approach 
discussed in chapter 7. The sensitivity of NSMM to subsurface elements was studied by used of calibrated 
experiments and theoretical finite element modeling. The sensitivity was studied for both contact and 
non-contact microscope modes and as a function of tip radius and tip-sample separation. Subsurface 
imaging was demonstrated on a topographically flat semiconductor test sample with stripes of increasing 
dopant density from 1x1016 to 4x1019 atoms cm-3 separated by bulk interface layers. The stripes were 
buried by depositing additional 120 nm- and 200 nm-thick oxide layers. The sample flatness ensured that 
no cross-talk from the topography contributed to the S11 reflection coefficient image. The sample also 
included a bare surface that served as a reference for comparison to the buried doped silicon. NSMM 
measurements revealed that that the dopant-dependent contrast could be resolved through both oxide 
thicknesses, but quantitative measurement requires a reliable calibration approach. A calibration 
procedure established the tip-sample capacitance as a function of oxide thickness via measurements of a 
reference sample with 100 nm, 200 nm, and 400 nm oxide layers and a native oxide. From the calibrated 
tip-sample capacitance a reasonable estimate was found of the detection sensitivity to subsurface 
semiconducting artifacts.  
 
In these experiments, the distance between the tip and subsurface feature of interest is established by 
the oxide thickness. As the oxide thickness increases, the lateral resolution decreases, as one would 
expect, assuming that the lateral resolution is related to tip diameter and the distance of the buried 
artifact from the tip. Furthermore, a thorough experimental investigation in Reference [37] showed that 
if the NSMM measurements are done in non-contact mode with the tip at a distance above the sample, 
the capability to resolve subsurface dopant contrast is lost when the tip height is on the order of the tip 
diameter. The lateral spatial resolution depends on the geometric structure of the feature of interest and 
the tip dimensions.   
 
Another strategy s for enhancement of the signal-to-noise ratio for materials buried in dielectric 
environment is based on electric force microscopy [38]. This has been experimentally demonstrated by 
imaging of carbon nanotubes (CNTs) immersed in a polymer film. The measurement is done in two 
scanning passes. One pass is for measurement of the topography, including sample tilt, and the second 
pass is for measurement of the electrostatic force signal with the distance between the tip and the sample 
constant. The constant separation is maintained based on the topographic information acquired during 
the first pass.  In addition, during the second pass a bias voltage can be applied to the conductive tip of 
the probe. The mechanical amplitude and phase of the cantilever probe are recorded as the electrostatic 
force signal. Recall that the electrostatic force is proportional to 𝑑𝐶 𝑑𝑧⁄  and to the square of the tip bias 
voltage Vtip. The change of the phase shift of the AFM probe under the harmonic oscillator approximation 
can be expressed as [38] 
 

∆∅ = ∅ − ∅0 ≈ tan (∅ − ∅0) ≈
𝑄

2𝑘
(𝐶1

′′(𝑧) − 𝐶2
′′(𝑧))𝑉𝑡𝑖𝑝

2  ,  (12.71)    



   
where ∅ is the phase shift when the probe is over the area with the inclusion of interest (here, a CNT) and 
∅0 is the phase shift when the probe is over the plain polymer. Q is the quality factor of the AFM probe 
and k is the spring constant.  
 
The underlying principle of the electrostatic force technique can be extended to NSMM. Like the 
electrostatic force, the microwave reflection coefficient is also a function of the capacitance between the 
tip and sample. Changes in the capacitance are not manifest through changes in the amplitude and phase 
of the vibrating cantilever, as it is in the case of the electrostatic force microscopy, but rather through 
changes in the amplitude and phase of the reflection coefficient. Therefore, equation (12.71) and the 
related analysis can be modified to apply to NSMM. For an electrostatic force microscope tip at a distance 
𝑧0 above a film surface, it follows from a simple plane capacitor model that the second derivative of the 
capacitance over portions of the sample with inclusions is [38] 
 

𝐶2
′′(𝑧) = 8𝜋𝜀0 [𝑙𝑛 (

1+𝑐𝑜𝑠𝜃

1−𝑐𝑜𝑠𝜃
)]

−2 1

{ℎ+(𝐷1+𝐷2) 𝜀𝑓𝑖𝑙𝑚+𝑡 𝜀𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛⁄⁄ }
3   (12.72) 

 
and the second derivative of the capacitance over sample without the inclusions (plain polymer) 
 

𝐶1
′′(𝑧) = 8𝜋𝜀0 [𝑙𝑛 (

1+𝑐𝑜𝑠𝜃

1−𝑐𝑜𝑠𝜃
)]

−2 1

{ℎ+(𝐷1+𝐷2+𝑡) 𝜀𝑓𝑖𝑙𝑚⁄ }
3 .   (12.72) 

 
Here, 𝜃 is the conic half angle of the cantilever, D1 is the depth of the inclusion, D2 is the distance of the 
inclusion to the bottom of the film, t is the thickness of the inclusion, 𝜀𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 is the permittivity of the 
inclusion, and 𝜀𝑓𝑖𝑙𝑚 is the permittivity of the polymer film (Fig. 12.4). Note that the phase contrast can be 

revealed only if the permittivity of the inclusion is significantly different from the permittivity of the 
polymer film. If the depth of the inclusion is not known a priori, then performing the measurements with 
the tip positioned at several heights over the sample surface enables a determination of D1.   
 
In this chapter we began by presenting the theoretical foundations for the complex problem of subsurface 
microwave imaging of embedded structures. The reviewed theories are not yet complete and the 
development of theoretical, numerical, and experimental approaches to the problem is ongoing. 
Experimental and theoretical exploration of the subsurface imaging problems, particularly those that use 
NSMM, are in the early stages of development and significantly more work has to be done. This is true 
even more so for fully quantitative, calibrated characterization of subsurface structures. Experimentally, 
it has been demonstrated that the technique is capable of subsurface, nondestructive detection of 
embedded objects. It remains for future work to establish calibrated, quantitative characterization of the 
geometric and material properties embedded inclusions, defects and interfaces. 
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